| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exrot4 | Structured version Visualization version GIF version | ||
| Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| exrot4 | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom13 2044 | . . 3 ⊢ (∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑤∃𝑧∃𝑦𝜑) | |
| 2 | 1 | exbii 1774 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑥∃𝑤∃𝑧∃𝑦𝜑) |
| 3 | excom13 2044 | . 2 ⊢ (∃𝑥∃𝑤∃𝑧∃𝑦𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | |
| 4 | 2, 3 | bitri 264 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-11 2034 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: elvvv 5178 dfoprab2 6701 xpassen 8054 5oalem7 28519 elfuns 32022 |
| Copyright terms: Public domain | W3C validator |