| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege51 | Structured version Visualization version GIF version | ||
| Description: Compare with jaod 395. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege51 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege50 38148 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜃 → 𝜒) → ((¬ 𝜓 → 𝜃) → 𝜒))) | |
| 2 | frege18 38112 | . 2 ⊢ (((𝜓 → 𝜒) → ((𝜃 → 𝜒) → ((¬ 𝜓 → 𝜃) → 𝜒))) → ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege28 38124 ax-frege31 38128 ax-frege41 38139 |
| This theorem is referenced by: frege128 38285 |
| Copyright terms: Public domain | W3C validator |