| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem2b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege55b 38191. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege55lem2b | ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege54cor1b 38188 | . 2 ⊢ [𝑥 / 𝑧]𝑧 = 𝑥 | |
| 2 | frege53b 38184 | . 2 ⊢ ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 ax-frege8 38103 ax-frege52c 38182 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
| This theorem is referenced by: frege55b 38191 |
| Copyright terms: Public domain | W3C validator |