| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56a | Structured version Visualization version GIF version | ||
| Description: Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege56a | ⊢ (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege55cor1a 38163 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 2 | frege9 38106 | . 2 ⊢ (((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) → (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege28 38124 ax-frege52a 38151 ax-frege54a 38156 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: frege57a 38167 |
| Copyright terms: Public domain | W3C validator |