| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege57b 38193. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege56b | ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege55b 38191 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | frege9 38106 | . 2 ⊢ ((𝑦 = 𝑥 → 𝑥 = 𝑦) → ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege52c 38182 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
| This theorem is referenced by: frege57b 38193 |
| Copyright terms: Public domain | W3C validator |