| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege61a | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65a 38177. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege61a | ⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege58a 38169 | . 2 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | |
| 2 | frege9 38106 | . 2 ⊢ (((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) → ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege58a 38169 |
| This theorem is referenced by: frege65a 38177 |
| Copyright terms: Public domain | W3C validator |