| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege63a | Structured version Visualization version GIF version | ||
| Description: Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege63a | ⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege62a 38174 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) | |
| 2 | frege24 38109 | . 2 ⊢ ((if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) → (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 38084 ax-frege2 38085 ax-frege8 38103 ax-frege58a 38169 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |