Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege63a Structured version   Visualization version   GIF version

Theorem frege63a 38175
Description: Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege63a (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓𝜒) ∧ (𝜃𝜏)) → if-(𝜑, 𝜒, 𝜏))))

Proof of Theorem frege63a
StepHypRef Expression
1 frege62a 38174 . 2 (if-(𝜑, 𝜓, 𝜃) → (((𝜓𝜒) ∧ (𝜃𝜏)) → if-(𝜑, 𝜒, 𝜏)))
2 frege24 38109 . 2 ((if-(𝜑, 𝜓, 𝜃) → (((𝜓𝜒) ∧ (𝜃𝜏)) → if-(𝜑, 𝜒, 𝜏))) → (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓𝜒) ∧ (𝜃𝜏)) → if-(𝜑, 𝜒, 𝜏)))))
31, 2ax-mp 5 1 (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓𝜒) ∧ (𝜃𝜏)) → if-(𝜑, 𝜒, 𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  if-wif 1012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 38084  ax-frege2 38085  ax-frege8 38103  ax-frege58a 38169
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator