| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvassi | Structured version Visualization version GIF version | ||
| Description: Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvass.1 | ⊢ 𝐴 ∈ ℋ |
| hvass.2 | ⊢ 𝐵 ∈ ℋ |
| hvass.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvassi | ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
| 4 | ax-hvass 27859 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1424 | 1 ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℋchil 27776 +ℎ cva 27777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvass 27859 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: hvadd12i 27914 hvsubeq0i 27920 norm3difi 28004 |
| Copyright terms: Public domain | W3C validator |