MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypstkdOLD Structured version   Visualization version   GIF version

Theorem hypstkdOLD 705
Description: Obsolete proof of mpidan 704 as of 28-Mar-2021. (Contributed by Stanislas Polu, 9-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
hypstkdOLD ((𝜑𝜓) → 𝜃)

Proof of Theorem hypstkdOLD
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
2 mpidan.1 . . 3 (𝜑𝜒)
32adantr 481 . 2 ((𝜑𝜓) → 𝜒)
4 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
51, 3, 4syl2anc 693 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator