| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi23 | Structured version Visualization version GIF version | ||
| Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpbi23 | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 330 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
| 3 | simpr 477 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (𝜒 ↔ 𝜃)) | |
| 4 | 3 | imbi2d 330 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((¬ 𝜏 → 𝜒) ↔ (¬ 𝜏 → 𝜃))) |
| 5 | 2, 4 | anbi12d 747 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (((𝜏 → 𝜑) ∧ (¬ 𝜏 → 𝜒)) ↔ ((𝜏 → 𝜓) ∧ (¬ 𝜏 → 𝜃)))) |
| 6 | dfifp2 1014 | . 2 ⊢ (if-(𝜏, 𝜑, 𝜒) ↔ ((𝜏 → 𝜑) ∧ (¬ 𝜏 → 𝜒))) | |
| 7 | dfifp2 1014 | . 2 ⊢ (if-(𝜏, 𝜓, 𝜃) ↔ ((𝜏 → 𝜓) ∧ (¬ 𝜏 → 𝜃))) | |
| 8 | 5, 6, 7 | 3bitr4g 303 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifpdfbi 37818 ifpnot23d 37830 ifpdfxor 37832 ifpananb 37851 ifpnannanb 37852 ifpxorxorb 37856 |
| Copyright terms: Public domain | W3C validator |