| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpdfan | Structured version Visualization version GIF version | ||
| Description: Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpdfan | ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, ⊥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1490 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | 1 | intnan 960 | . . 3 ⊢ ¬ (¬ 𝜑 ∧ ⊥) |
| 3 | 2 | biorfi 422 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ⊥))) |
| 4 | df-ifp 1013 | . 2 ⊢ (if-(𝜑, 𝜓, ⊥) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ⊥))) | |
| 5 | 3, 4 | bitr4i 267 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, ⊥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 if-wif 1012 ⊥wfal 1488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: ifpdfnan 37831 ifpdfxor 37832 |
| Copyright terms: Public domain | W3C validator |