Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  impexpdcom Structured version   Visualization version   GIF version

Theorem impexpdcom 38721
Description: The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
2:: ((𝜓 → (𝜒 → (𝜑𝜃))) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
qed:1,2: ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))
Assertion
Ref Expression
impexpdcom ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))

Proof of Theorem impexpdcom
StepHypRef Expression
1 impexpd 38719 . 2 ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
2 com3rgbi 38720 . 2 ((𝜓 → (𝜒 → (𝜑𝜃))) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
31, 2bitr4i 267 1 ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator