| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > merlem8 | Structured version Visualization version GIF version | ||
| Description: Step 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merlem8 | ⊢ (((𝜓 → 𝜒) → 𝜃) → (((𝜒 → 𝜏) → (¬ 𝜃 → ¬ 𝜓)) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meredith 1566 | . 2 ⊢ (((((𝜑 → 𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑 → 𝜑) → (𝜑 → 𝜑))) | |
| 2 | merlem7 1573 | . 2 ⊢ ((((((𝜑 → 𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑 → 𝜑) → (𝜑 → 𝜑))) → (((𝜓 → 𝜒) → 𝜃) → (((𝜒 → 𝜏) → (¬ 𝜃 → ¬ 𝜓)) → 𝜃))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜓 → 𝜒) → 𝜃) → (((𝜒 → 𝜏) → (¬ 𝜃 → ¬ 𝜓)) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: merlem9 1575 |
| Copyright terms: Public domain | W3C validator |