| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minimp | Structured version Visualization version GIF version | ||
| Description: A single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. (Contributed by BJ, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| minimp | ⊢ (𝜑 → ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jarr 106 | . . . 4 ⊢ (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) | |
| 2 | 1 | a2d 29 | . . 3 ⊢ (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) |
| 3 | 2 | com12 32 | . 2 ⊢ ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏))) |
| 4 | 3 | a1i 11 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: minimp-sylsimp 1561 minimp-ax2c 1563 |
| Copyright terms: Public domain | W3C validator |