| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnoti | Structured version Visualization version GIF version | ||
| Description: Inference associated with notnot 136. (Contributed by NM, 27-Feb-2008.) |
| Ref | Expression |
|---|---|
| notnoti.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| notnoti | ⊢ ¬ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnoti.1 | . 2 ⊢ 𝜑 | |
| 2 | notnot 136 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nbn3 363 fal 1490 ax6dgen 2005 mdegleb 23824 nextnt 32404 amosym1 32425 ifpdfan2 37807 aisbnaxb 41078 |
| Copyright terms: Public domain | W3C validator |