| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > notornotel1 | Structured version Visualization version GIF version | ||
| Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| notornotel1.1 | ⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| notornotel1 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notornotel1.1 | . 2 ⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) | |
| 2 | ioran 511 | . . . 4 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ↔ (¬ ¬ 𝜓 ∧ ¬ 𝜒)) | |
| 3 | 2 | biimpi 206 | . . 3 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) → (¬ ¬ 𝜓 ∧ ¬ 𝜒)) |
| 4 | simpl 473 | . . 3 ⊢ ((¬ ¬ 𝜓 ∧ ¬ 𝜒) → ¬ ¬ 𝜓) | |
| 5 | notnotr 125 | . . 3 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 6 | 3, 4, 5 | 3syl 18 | . 2 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) → 𝜓) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: notornotel2 33898 ac6s6 33980 |
| Copyright terms: Public domain | W3C validator |