| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm1.4 | Structured version Visualization version GIF version | ||
| Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm1.4 | ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 399 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | |
| 2 | orc 400 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
| 3 | 1, 2 | jaoi 394 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: orcom 402 orcoms 404 pm2.3 596 pm2.36 888 pm2.37 889 rb-ax2 1678 nfntOLDOLD 1783 prneimg 4388 orcomdd 33891 rp-fakeanorass 37858 orbi1rVD 39083 |
| Copyright terms: Public domain | W3C validator |