| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.194 | Structured version Visualization version GIF version | ||
| Description: Theorem *13.194 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm13.194 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm13.13a 38608 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → [𝑦 / 𝑥]𝜑) | |
| 2 | sbsbc 3439 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | 1, 2 | sylibr 224 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → [𝑦 / 𝑥]𝜑) |
| 4 | simpl 473 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝜑) | |
| 5 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 6 | 3, 4, 5 | 3jca 1242 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦)) |
| 7 | 3simpc 1060 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦) → (𝜑 ∧ 𝑥 = 𝑦)) | |
| 8 | 6, 7 | impbii 199 | 1 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 [wsb 1880 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |