| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.83 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.83 | ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 431 | . . 3 ⊢ (𝜑 ∨ ¬ 𝜑) | |
| 2 | 1 | a1bi 352 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∨ ¬ 𝜑) → 𝜓)) |
| 3 | jaob 822 | . 2 ⊢ (((𝜑 ∨ ¬ 𝜑) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓))) | |
| 4 | 2, 3 | bitr2i 265 | 1 ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: dmdbr5ati 29281 cvlsupr3 34631 rp-fakeanorass 37858 |
| Copyright terms: Public domain | W3C validator |