| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.75OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of pm5.75 978 as of 12-Feb-2021. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| pm5.75OLD | ⊢ (((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓 ∨ 𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi1 743 | . . 3 ⊢ ((𝜑 ↔ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ ¬ 𝜓) ↔ ((𝜓 ∨ 𝜒) ∧ ¬ 𝜓))) | |
| 2 | orcom 402 | . . . . 5 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
| 3 | 2 | anbi1i 731 | . . . 4 ⊢ (((𝜓 ∨ 𝜒) ∧ ¬ 𝜓) ↔ ((𝜒 ∨ 𝜓) ∧ ¬ 𝜓)) |
| 4 | pm5.61 749 | . . . 4 ⊢ (((𝜒 ∨ 𝜓) ∧ ¬ 𝜓) ↔ (𝜒 ∧ ¬ 𝜓)) | |
| 5 | 3, 4 | bitri 264 | . . 3 ⊢ (((𝜓 ∨ 𝜒) ∧ ¬ 𝜓) ↔ (𝜒 ∧ ¬ 𝜓)) |
| 6 | 1, 5 | syl6bb 276 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ ¬ 𝜓) ↔ (𝜒 ∧ ¬ 𝜓))) |
| 7 | pm4.71 662 | . . . 4 ⊢ ((𝜒 → ¬ 𝜓) ↔ (𝜒 ↔ (𝜒 ∧ ¬ 𝜓))) | |
| 8 | 7 | biimpi 206 | . . 3 ⊢ ((𝜒 → ¬ 𝜓) → (𝜒 ↔ (𝜒 ∧ ¬ 𝜓))) |
| 9 | 8 | bicomd 213 | . 2 ⊢ ((𝜒 → ¬ 𝜓) → ((𝜒 ∧ ¬ 𝜓) ↔ 𝜒)) |
| 10 | 6, 9 | sylan9bbr 737 | 1 ⊢ (((𝜒 → ¬ 𝜓) ∧ (𝜑 ↔ (𝜓 ∨ 𝜒))) → ((𝜑 ∧ ¬ 𝜓) ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |