| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralel | Structured version Visualization version GIF version | ||
| Description: All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020.) |
| Ref | Expression |
|---|---|
| ralel | ⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | rgen 2922 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 |
| This theorem depends on definitions: df-bi 197 df-ral 2917 |
| This theorem is referenced by: raleleqALT 3157 |
| Copyright terms: Public domain | W3C validator |