| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleleq | Structured version Visualization version GIF version | ||
| Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) |
| Ref | Expression |
|---|---|
| raleleq | ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2690 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | biimpd 219 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 3 | 2 | ralrimiv 2965 | 1 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ral 2917 |
| This theorem is referenced by: uvtxnbgrb 26302 cplgruvtxb 26311 |
| Copyright terms: Public domain | W3C validator |