| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbsyl | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rbsyl.1 | ⊢ (¬ 𝜓 ∨ 𝜒) |
| rbsyl.2 | ⊢ (𝜑 ∨ 𝜓) |
| Ref | Expression |
|---|---|
| rbsyl | ⊢ (𝜑 ∨ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rbsyl.2 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
| 2 | rbsyl.1 | . . 3 ⊢ (¬ 𝜓 ∨ 𝜒) | |
| 3 | rb-ax1 1677 | . . 3 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | |
| 4 | 2, 3 | anmp 1676 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒)) |
| 5 | 1, 4 | anmp 1676 | 1 ⊢ (𝜑 ∨ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: rblem1 1682 rblem2 1683 rblem3 1684 rblem4 1685 rblem5 1686 rblem6 1687 re2luk1 1690 re2luk2 1691 re2luk3 1692 |
| Copyright terms: Public domain | W3C validator |