| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbii | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| rexeqbii.1 | ⊢ 𝐴 = 𝐵 |
| rexeqbii.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| rexeqbii | ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeqbii.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2693 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | rexeqbii.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | anbi12i 733 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) |
| 5 | 4 | rexbii2 3039 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-rex 2918 |
| This theorem is referenced by: bnj882 30996 |
| Copyright terms: Public domain | W3C validator |