Proof of Theorem rp-fakeimass
| Step | Hyp | Ref
| Expression |
| 1 | | ax-1 6 |
. . . . . . . 8
⊢ (𝜓 → (𝜑 → 𝜓)) |
| 2 | 1 | con3i 150 |
. . . . . . 7
⊢ (¬
(𝜑 → 𝜓) → ¬ 𝜓) |
| 3 | 2 | pm2.21d 118 |
. . . . . 6
⊢ (¬
(𝜑 → 𝜓) → (𝜓 → 𝜒)) |
| 4 | 3 | a1d 25 |
. . . . 5
⊢ (¬
(𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) |
| 5 | | ax-1 6 |
. . . . . 6
⊢ (𝜒 → (𝜓 → 𝜒)) |
| 6 | 5 | a1d 25 |
. . . . 5
⊢ (𝜒 → (𝜑 → (𝜓 → 𝜒))) |
| 7 | 4, 6 | ja 173 |
. . . 4
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) |
| 8 | | ax-2 7 |
. . . . 5
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| 9 | 8 | com3r 87 |
. . . 4
⊢ (𝜑 → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → 𝜒))) |
| 10 | 7, 9 | impbid2 216 |
. . 3
⊢ (𝜑 → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |
| 11 | | ax-1 6 |
. . . 4
⊢ (𝜒 → ((𝜑 → 𝜓) → 𝜒)) |
| 12 | 11, 6 | 2thd 255 |
. . 3
⊢ (𝜒 → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |
| 13 | 10, 12 | jaoi 394 |
. 2
⊢ ((𝜑 ∨ 𝜒) → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |
| 14 | | jarl 175 |
. . . . 5
⊢ (((𝜑 → 𝜓) → 𝜒) → (¬ 𝜑 → 𝜒)) |
| 15 | 14 | orrd 393 |
. . . 4
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜑 ∨ 𝜒)) |
| 16 | 15 | a1d 25 |
. . 3
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒))) |
| 17 | | simplim 163 |
. . . . 5
⊢ (¬
(𝜑 → (𝜓 → 𝜒)) → 𝜑) |
| 18 | 17 | orcd 407 |
. . . 4
⊢ (¬
(𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒)) |
| 19 | 18 | a1i 11 |
. . 3
⊢ (¬
((𝜑 → 𝜓) → 𝜒) → (¬ (𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒))) |
| 20 | 16, 19 | bija 370 |
. 2
⊢ ((((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) → (𝜑 ∨ 𝜒)) |
| 21 | 13, 20 | impbii 199 |
1
⊢ ((𝜑 ∨ 𝜒) ↔ (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |