| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rsp2e | Structured version Visualization version GIF version | ||
| Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) (Proof shortened by Wolf Lammen, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| rsp2e | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe 3003 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
| 2 | rspe 3003 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | 1, 2 | sylan2 491 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| 4 | 3 | 3impb 1260 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 df-rex 2918 |
| This theorem is referenced by: pell14qrdich 37433 |
| Copyright terms: Public domain | W3C validator |