MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec3 Structured version   Visualization version   GIF version

Theorem rspec3 2935
Description: Specialization rule for restricted quantification, with three quantifiers. (Contributed by NM, 20-Nov-1994.)
Hypothesis
Ref Expression
rspec3.1 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Assertion
Ref Expression
rspec3 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)

Proof of Theorem rspec3
StepHypRef Expression
1 rspec3.1 . . . 4 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
21rspec2 2934 . . 3 ((𝑥𝐴𝑦𝐵) → ∀𝑧𝐶 𝜑)
32r19.21bi 2932 . 2 (((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶) → 𝜑)
433impa 1259 1 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-ex 1705  df-ral 2917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator