MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syld3an1 Structured version   Visualization version   GIF version

Theorem syld3an1 1372
Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.)
Hypotheses
Ref Expression
syld3an1.1 ((𝜒𝜓𝜃) → 𝜑)
syld3an1.2 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syld3an1 ((𝜒𝜓𝜃) → 𝜏)

Proof of Theorem syld3an1
StepHypRef Expression
1 syld3an1.1 . . . 4 ((𝜒𝜓𝜃) → 𝜑)
213com13 1270 . . 3 ((𝜃𝜓𝜒) → 𝜑)
3 syld3an1.2 . . . 4 ((𝜑𝜓𝜃) → 𝜏)
433com13 1270 . . 3 ((𝜃𝜓𝜑) → 𝜏)
52, 4syld3an3 1371 . 2 ((𝜃𝜓𝜒) → 𝜏)
653com13 1270 1 ((𝜒𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  npncan  10302  nnpcan  10304  ppncan  10323  muldivdir  10720  div2neg  10748  ltmuldiv  10896  opfi1uzind  13283  opfi1uzindOLD  13289  sgrp2nmndlem4  17415  zndvds  19898  subdivcomb1  31611  wsuceq123  31760  atlrelat1  34608  cvlatcvr1  34628  dih11  36554  mullimc  39848  mullimcf  39855  icccncfext  40100  stoweidlem34  40251  stoweidlem49  40266  stoweidlem57  40274  sigarexp  41048  el0ldepsnzr  42256
  Copyright terms: Public domain W3C validator