| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uunT12p4 | Structured version Visualization version GIF version | ||
| Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uunT12p4.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) |
| Ref | Expression |
|---|---|
| uunT12p4 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 1043 | . . . 4 ⊢ ((⊤ ∧ 𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜓 ∧ ⊤)) | |
| 2 | 3anass 1042 | . . . 4 ⊢ ((⊤ ∧ 𝜑 ∧ 𝜓) ↔ (⊤ ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | bitr3i 266 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) ↔ (⊤ ∧ (𝜑 ∧ 𝜓))) |
| 4 | truan 1501 | . . 3 ⊢ ((⊤ ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | |
| 5 | 3, 4 | bitri 264 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) ↔ (𝜑 ∧ 𝜓)) |
| 6 | uunT12p4.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ ⊤) → 𝜒) | |
| 7 | 5, 6 | sylbir 225 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ⊤wtru 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-tru 1486 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |