| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclb | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| vtoclb.1 | ⊢ 𝐴 ∈ V |
| vtoclb.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclb.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclb.4 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclb | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclb.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtoclb.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 3 | vtoclb.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bibi12d 335 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 5 | vtoclb.4 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 6 | 1, 4, 5 | vtocl 3259 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 Vcvv 3200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: sbss 4084 bnj609 30987 |
| Copyright terms: Public domain | W3C validator |