MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo4 Structured version   Visualization version   GIF version

Theorem zeo4 15062
Description: An integer is even or odd but not both. With this representation of even and odd integers, this variant of zeo2 11464 follows immediately from the principle of double negation, see notnotb 304. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo4 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))

Proof of Theorem zeo4
StepHypRef Expression
1 notnotb 304 . 2 (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁)
21a1i 11 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wcel 1990   class class class wbr 4653  2c2 11070  cz 11377  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator