| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > brtxp | Unicode version | ||
| Description: Binary relationship over a tail cross product. (Contributed by SF, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| brtxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 4693 |
. . . 4
| |
| 2 | brco 4883 |
. . . . 5
| |
| 3 | brco 4883 |
. . . . 5
| |
| 4 | 2, 3 | anbi12i 678 |
. . . 4
|
| 5 | 1, 4 | bitri 240 |
. . 3
|
| 6 | df-txp 5736 |
. . . 4
| |
| 7 | 6 | breqi 4645 |
. . 3
|
| 8 | eeanv 1913 |
. . 3
| |
| 9 | 5, 7, 8 | 3bitr4i 268 |
. 2
|
| 10 | an4 797 |
. . . 4
| |
| 11 | ancom 437 |
. . . . 5
| |
| 12 | brcnv 4892 |
. . . . . . . . 9
| |
| 13 | vex 2862 |
. . . . . . . . . 10
| |
| 14 | 13 | br1st 4858 |
. . . . . . . . 9
|
| 15 | 12, 14 | bitri 240 |
. . . . . . . 8
|
| 16 | brcnv 4892 |
. . . . . . . . 9
| |
| 17 | vex 2862 |
. . . . . . . . . 10
| |
| 18 | 17 | br2nd 4859 |
. . . . . . . . 9
|
| 19 | 16, 18 | bitri 240 |
. . . . . . . 8
|
| 20 | 15, 19 | anbi12i 678 |
. . . . . . 7
|
| 21 | eeanv 1913 |
. . . . . . 7
| |
| 22 | eqtr2 2371 |
. . . . . . . . . . 11
| |
| 23 | opth 4602 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | simplbi 446 |
. . . . . . . . . . . . 13
|
| 25 | 24 | eqcomd 2358 |
. . . . . . . . . . . 12
|
| 26 | 25 | opeq1d 4584 |
. . . . . . . . . . 11
|
| 27 | 22, 26 | syl 15 |
. . . . . . . . . 10
|
| 28 | eqeq1 2359 |
. . . . . . . . . . 11
| |
| 29 | 28 | adantl 452 |
. . . . . . . . . 10
|
| 30 | 27, 29 | mpbird 223 |
. . . . . . . . 9
|
| 31 | 30 | exlimivv 1635 |
. . . . . . . 8
|
| 32 | opeq2 4579 |
. . . . . . . . . . . 12
| |
| 33 | 32 | eqeq2d 2364 |
. . . . . . . . . . 11
|
| 34 | opeq1 4578 |
. . . . . . . . . . . 12
| |
| 35 | 34 | eqeq2d 2364 |
. . . . . . . . . . 11
|
| 36 | 33, 35 | bi2anan9 843 |
. . . . . . . . . 10
|
| 37 | 17, 13, 36 | spc2ev 2947 |
. . . . . . . . 9
|
| 38 | 37 | anidms 626 |
. . . . . . . 8
|
| 39 | 31, 38 | impbii 180 |
. . . . . . 7
|
| 40 | 20, 21, 39 | 3bitr2i 264 |
. . . . . 6
|
| 41 | 40 | anbi2i 675 |
. . . . 5
|
| 42 | 3anass 938 |
. . . . 5
| |
| 43 | 11, 41, 42 | 3bitr4i 268 |
. . . 4
|
| 44 | 10, 43 | bitri 240 |
. . 3
|
| 45 | 44 | 2exbii 1583 |
. 2
|
| 46 | 9, 45 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-co 4726 df-cnv 4785 df-2nd 4797 df-txp 5736 |
| This theorem is referenced by: restxp 5786 oqelins4 5794 dmtxp 5802 fntxp 5804 brpprod 5839 |
| Copyright terms: Public domain | W3C validator |