| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ceqsrexv | Unicode version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ceqsrexv.1 |
|
| Ref | Expression |
|---|---|
| ceqsrexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2620 |
. . 3
| |
| 2 | an12 772 |
. . . 4
| |
| 3 | 2 | exbii 1582 |
. . 3
|
| 4 | 1, 3 | bitr4i 243 |
. 2
|
| 5 | eleq1 2413 |
. . . . 5
| |
| 6 | ceqsrexv.1 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 691 |
. . . 4
|
| 8 | 7 | ceqsexgv 2971 |
. . 3
|
| 9 | 8 | bianabs 850 |
. 2
|
| 10 | 4, 9 | syl5bb 248 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 |
| This theorem is referenced by: ceqsrexbv 2973 ceqsrex2v 2974 fnasrn 5417 f1oiso 5499 |
| Copyright terms: Public domain | W3C validator |