| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dff3 | Unicode version | ||
| Description: Alternate definition of a mapping. (Contributed by set.mm contributors, 20-Mar-2007.) |
| Ref | Expression |
|---|---|
| dff3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp 5232 |
. . 3
| |
| 2 | fdm 5226 |
. . . . . . . 8
| |
| 3 | 2 | eleq2d 2420 |
. . . . . . 7
|
| 4 | 3 | biimpar 471 |
. . . . . 6
|
| 5 | eldm 4898 |
. . . . . 6
| |
| 6 | 4, 5 | sylib 188 |
. . . . 5
|
| 7 | ffun 5225 |
. . . . . . 7
| |
| 8 | 7 | adantr 451 |
. . . . . 6
|
| 9 | funmo 5125 |
. . . . . 6
| |
| 10 | 8, 9 | syl 15 |
. . . . 5
|
| 11 | eu5 2242 |
. . . . 5
| |
| 12 | 6, 10, 11 | sylanbrc 645 |
. . . 4
|
| 13 | 12 | ralrimiva 2697 |
. . 3
|
| 14 | 1, 13 | jca 518 |
. 2
|
| 15 | df-ral 2619 |
. . . . . . 7
| |
| 16 | dmss 4906 |
. . . . . . . . . . . . . . 15
| |
| 17 | dmxpss 5052 |
. . . . . . . . . . . . . . 15
| |
| 18 | 16, 17 | syl6ss 3284 |
. . . . . . . . . . . . . 14
|
| 19 | 18 | sseld 3272 |
. . . . . . . . . . . . 13
|
| 20 | 5, 19 | syl5bir 209 |
. . . . . . . . . . . 12
|
| 21 | 20 | con3d 125 |
. . . . . . . . . . 11
|
| 22 | pm2.21 100 |
. . . . . . . . . . . 12
| |
| 23 | df-mo 2209 |
. . . . . . . . . . . 12
| |
| 24 | 22, 23 | sylibr 203 |
. . . . . . . . . . 11
|
| 25 | 21, 24 | syl6 29 |
. . . . . . . . . 10
|
| 26 | 25 | a1dd 42 |
. . . . . . . . 9
|
| 27 | pm2.27 35 |
. . . . . . . . . 10
| |
| 28 | eumo 2244 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | syl6 29 |
. . . . . . . . 9
|
| 30 | 26, 29 | pm2.61d2 152 |
. . . . . . . 8
|
| 31 | 30 | alimdv 1621 |
. . . . . . 7
|
| 32 | 15, 31 | syl5bi 208 |
. . . . . 6
|
| 33 | 32 | imp 418 |
. . . . 5
|
| 34 | dffun6 5124 |
. . . . 5
| |
| 35 | 33, 34 | sylibr 203 |
. . . 4
|
| 36 | 18 | adantr 451 |
. . . . 5
|
| 37 | euex 2227 |
. . . . . . . . 9
| |
| 38 | 37, 5 | sylibr 203 |
. . . . . . . 8
|
| 39 | 38 | ralimi 2689 |
. . . . . . 7
|
| 40 | dfss3 3263 |
. . . . . . 7
| |
| 41 | 39, 40 | sylibr 203 |
. . . . . 6
|
| 42 | 41 | adantl 452 |
. . . . 5
|
| 43 | 36, 42 | eqssd 3289 |
. . . 4
|
| 44 | df-fn 4790 |
. . . 4
| |
| 45 | 35, 43, 44 | sylanbrc 645 |
. . 3
|
| 46 | rnss 4959 |
. . . . 5
| |
| 47 | rnxpss 5053 |
. . . . 5
| |
| 48 | 46, 47 | syl6ss 3284 |
. . . 4
|
| 49 | 48 | adantr 451 |
. . 3
|
| 50 | df-f 4791 |
. . 3
| |
| 51 | 45, 49, 50 | sylanbrc 645 |
. 2
|
| 52 | 14, 51 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-f 4791 |
| This theorem is referenced by: dff4 5421 |
| Copyright terms: Public domain | W3C validator |