| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elab2 | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 |
|
| elab2.2 |
|
| elab2.3 |
|
| Ref | Expression |
|---|---|
| elab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 |
. 2
| |
| 2 | elab2.2 |
. . 3
| |
| 3 | elab2.3 |
. . 3
| |
| 4 | 2, 3 | elab2g 2987 |
. 2
|
| 5 | 1, 4 | ax-mp 8 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 |
| This theorem is referenced by: elpw 3728 elint 3932 opkelopkabg 4245 0ceven 4505 eventfin 4517 oddtfin 4518 dfphi2 4569 phi11lem1 4595 0cnelphi 4597 proj1op 4600 proj2op 4601 opabid 4695 oprabid 5550 elfuns 5829 |
| Copyright terms: Public domain | W3C validator |