| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > f1o00 | Unicode version | ||
| Description: One-to-one onto mapping of the empty set. (Contributed by set.mm contributors, 15-Apr-1998.) |
| Ref | Expression |
|---|---|
| f1o00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 5294 |
. 2
| |
| 2 | fn0 5202 |
. . . . . 6
| |
| 3 | 2 | biimpi 186 |
. . . . 5
|
| 4 | 3 | adantr 451 |
. . . 4
|
| 5 | dm0 4918 |
. . . . 5
| |
| 6 | cnveq 4886 |
. . . . . . . . . 10
| |
| 7 | cnv0 5031 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | syl6eq 2401 |
. . . . . . . . 9
|
| 9 | 2, 8 | sylbi 187 |
. . . . . . . 8
|
| 10 | 9 | fneq1d 5175 |
. . . . . . 7
|
| 11 | 10 | biimpa 470 |
. . . . . 6
|
| 12 | fndm 5182 |
. . . . . 6
| |
| 13 | 11, 12 | syl 15 |
. . . . 5
|
| 14 | 5, 13 | syl5reqr 2400 |
. . . 4
|
| 15 | 4, 14 | jca 518 |
. . 3
|
| 16 | 2 | biimpri 197 |
. . . . 5
|
| 17 | 16 | adantr 451 |
. . . 4
|
| 18 | eqid 2353 |
. . . . . 6
| |
| 19 | fn0 5202 |
. . . . . 6
| |
| 20 | 18, 19 | mpbir 200 |
. . . . 5
|
| 21 | 8 | fneq1d 5175 |
. . . . . 6
|
| 22 | fneq2 5174 |
. . . . . 6
| |
| 23 | 21, 22 | sylan9bb 680 |
. . . . 5
|
| 24 | 20, 23 | mpbiri 224 |
. . . 4
|
| 25 | 17, 24 | jca 518 |
. . 3
|
| 26 | 15, 25 | impbii 180 |
. 2
|
| 27 | 1, 26 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
| This theorem is referenced by: fo00 5318 en0 6042 |
| Copyright terms: Public domain | W3C validator |