| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > funcnvuni | Unicode version | ||
| Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5156 for "single-rooted" definition.) (Contributed by set.mm contributors, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| funcnvuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 4886 |
. . . . . . . 8
| |
| 2 | 1 | eqeq2d 2364 |
. . . . . . 7
|
| 3 | 2 | cbvrexv 2836 |
. . . . . 6
|
| 4 | cnveq 4886 |
. . . . . . . . . . 11
| |
| 5 | 4 | funeqd 5129 |
. . . . . . . . . 10
|
| 6 | sseq1 3292 |
. . . . . . . . . . . 12
| |
| 7 | sseq2 3293 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | orbi12d 690 |
. . . . . . . . . . 11
|
| 9 | 8 | ralbidv 2634 |
. . . . . . . . . 10
|
| 10 | 5, 9 | anbi12d 691 |
. . . . . . . . 9
|
| 11 | 10 | rspcv 2951 |
. . . . . . . 8
|
| 12 | funeq 5127 |
. . . . . . . . . 10
| |
| 13 | 12 | biimprcd 216 |
. . . . . . . . 9
|
| 14 | sseq2 3293 |
. . . . . . . . . . . . . . 15
| |
| 15 | sseq1 3292 |
. . . . . . . . . . . . . . 15
| |
| 16 | 14, 15 | orbi12d 690 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | rspcv 2951 |
. . . . . . . . . . . . 13
|
| 18 | cnvss 4885 |
. . . . . . . . . . . . . . . 16
| |
| 19 | cnvss 4885 |
. . . . . . . . . . . . . . . 16
| |
| 20 | 18, 19 | orim12i 502 |
. . . . . . . . . . . . . . 15
|
| 21 | sseq12 3294 |
. . . . . . . . . . . . . . . . 17
| |
| 22 | 21 | ancoms 439 |
. . . . . . . . . . . . . . . 16
|
| 23 | sseq12 3294 |
. . . . . . . . . . . . . . . 16
| |
| 24 | 22, 23 | orbi12d 690 |
. . . . . . . . . . . . . . 15
|
| 25 | 20, 24 | syl5ibrcom 213 |
. . . . . . . . . . . . . 14
|
| 26 | 25 | exp3a 425 |
. . . . . . . . . . . . 13
|
| 27 | 17, 26 | syl6com 31 |
. . . . . . . . . . . 12
|
| 28 | 27 | rexlimdv 2737 |
. . . . . . . . . . 11
|
| 29 | 28 | com23 72 |
. . . . . . . . . 10
|
| 30 | 29 | alrimdv 1633 |
. . . . . . . . 9
|
| 31 | 13, 30 | anim12ii 553 |
. . . . . . . 8
|
| 32 | 11, 31 | syl6com 31 |
. . . . . . 7
|
| 33 | 32 | rexlimdv 2737 |
. . . . . 6
|
| 34 | 3, 33 | syl5bi 208 |
. . . . 5
|
| 35 | 34 | alrimiv 1631 |
. . . 4
|
| 36 | df-ral 2619 |
. . . . 5
| |
| 37 | vex 2862 |
. . . . . . . 8
| |
| 38 | eqeq1 2359 |
. . . . . . . . 9
| |
| 39 | 38 | rexbidv 2635 |
. . . . . . . 8
|
| 40 | 37, 39 | elab 2985 |
. . . . . . 7
|
| 41 | eqeq1 2359 |
. . . . . . . . . 10
| |
| 42 | 41 | rexbidv 2635 |
. . . . . . . . 9
|
| 43 | 42 | ralab 2997 |
. . . . . . . 8
|
| 44 | 43 | anbi2i 675 |
. . . . . . 7
|
| 45 | 40, 44 | imbi12i 316 |
. . . . . 6
|
| 46 | 45 | albii 1566 |
. . . . 5
|
| 47 | 36, 46 | bitr2i 241 |
. . . 4
|
| 48 | 35, 47 | sylib 188 |
. . 3
|
| 49 | fununi 5160 |
. . 3
| |
| 50 | 48, 49 | syl 15 |
. 2
|
| 51 | cnvuni 4895 |
. . . 4
| |
| 52 | vex 2862 |
. . . . . 6
| |
| 53 | 52 | cnvex 5102 |
. . . . 5
|
| 54 | 53 | dfiun2 4001 |
. . . 4
|
| 55 | 51, 54 | eqtri 2373 |
. . 3
|
| 56 | 55 | funeqi 5128 |
. 2
|
| 57 | 50, 56 | sylibr 203 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-swap 4724 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-fun 4789 |
| This theorem is referenced by: fun11uni 5162 |
| Copyright terms: Public domain | W3C validator |