| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > imadif | Unicode version | ||
| Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.) |
| Ref | Expression |
|---|---|
| imadif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandir 802 |
. . . . . . 7
| |
| 2 | 1 | exbii 1582 |
. . . . . 6
|
| 3 | 19.40 1609 |
. . . . . 6
| |
| 4 | 2, 3 | sylbi 187 |
. . . . 5
|
| 5 | nfv 1619 |
. . . . . . . . . 10
| |
| 6 | nfe1 1732 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | nfan 1824 |
. . . . . . . . 9
|
| 8 | funmo 5125 |
. . . . . . . . . . . . 13
| |
| 9 | brcnv 4892 |
. . . . . . . . . . . . . 14
| |
| 10 | 9 | mobii 2240 |
. . . . . . . . . . . . 13
|
| 11 | 8, 10 | sylib 188 |
. . . . . . . . . . . 12
|
| 12 | mopick 2266 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | sylan 457 |
. . . . . . . . . . 11
|
| 14 | 13 | con2d 107 |
. . . . . . . . . 10
|
| 15 | imnan 411 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | sylib 188 |
. . . . . . . . 9
|
| 17 | 7, 16 | alrimi 1765 |
. . . . . . . 8
|
| 18 | 17 | ex 423 |
. . . . . . 7
|
| 19 | exancom 1586 |
. . . . . . 7
| |
| 20 | alnex 1543 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | 3imtr3g 260 |
. . . . . 6
|
| 22 | 21 | anim2d 548 |
. . . . 5
|
| 23 | 4, 22 | syl5 28 |
. . . 4
|
| 24 | 19.29r 1597 |
. . . . . 6
| |
| 25 | 20, 24 | sylan2br 462 |
. . . . 5
|
| 26 | andi 837 |
. . . . . . 7
| |
| 27 | ianor 474 |
. . . . . . . 8
| |
| 28 | 27 | anbi2i 675 |
. . . . . . 7
|
| 29 | an32 773 |
. . . . . . . 8
| |
| 30 | pm3.24 852 |
. . . . . . . . . . 11
| |
| 31 | 30 | intnan 880 |
. . . . . . . . . 10
|
| 32 | anass 630 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | mtbir 290 |
. . . . . . . . 9
|
| 34 | 33 | biorfi 396 |
. . . . . . . 8
|
| 35 | 29, 34 | bitri 240 |
. . . . . . 7
|
| 36 | 26, 28, 35 | 3bitr4i 268 |
. . . . . 6
|
| 37 | 36 | exbii 1582 |
. . . . 5
|
| 38 | 25, 37 | sylib 188 |
. . . 4
|
| 39 | 23, 38 | impbid1 194 |
. . 3
|
| 40 | elima2 4755 |
. . . 4
| |
| 41 | eldif 3221 |
. . . . . 6
| |
| 42 | 41 | anbi1i 676 |
. . . . 5
|
| 43 | 42 | exbii 1582 |
. . . 4
|
| 44 | 40, 43 | bitri 240 |
. . 3
|
| 45 | eldif 3221 |
. . . 4
| |
| 46 | elima2 4755 |
. . . . 5
| |
| 47 | elima2 4755 |
. . . . . 6
| |
| 48 | 47 | notbii 287 |
. . . . 5
|
| 49 | 46, 48 | anbi12i 678 |
. . . 4
|
| 50 | 45, 49 | bitri 240 |
. . 3
|
| 51 | 39, 44, 50 | 3bitr4g 279 |
. 2
|
| 52 | 51 | eqrdv 2351 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-fun 4789 |
| This theorem is referenced by: imain 5172 resdif 5306 |
| Copyright terms: Public domain | W3C validator |