| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfeqd | Unicode version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 |
|
| nfeqd.2 |
|
| Ref | Expression |
|---|---|
| nfeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2347 |
. 2
| |
| 2 | nfv 1619 |
. . 3
| |
| 3 | nfeqd.1 |
. . . . 5
| |
| 4 | 3 | nfcrd 2502 |
. . . 4
|
| 5 | nfeqd.2 |
. . . . 5
| |
| 6 | 5 | nfcrd 2502 |
. . . 4
|
| 7 | 4, 6 | nfbid 1832 |
. . 3
|
| 8 | 2, 7 | nfald 1852 |
. 2
|
| 9 | 1, 8 | nfxfrd 1571 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-cleq 2346 df-nfc 2478 |
| This theorem is referenced by: nfeld 2504 nfned 2612 vtoclgft 2905 sbcralt 3118 csbiebt 3172 dfnfc2 3909 nfiotad 4342 iota2df 4365 dfid3 4768 oprabid 5550 |
| Copyright terms: Public domain | W3C validator |