| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > phialllem2 | Unicode version | ||
| Description: Lemma for phiall 4618. Any set without 0c is equal to the Phi of a set. (Contributed by Scott Fenton, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| phiall.1 |
|
| Ref | Expression |
|---|---|
| phialllem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3476 |
. . 3
| |
| 2 | inss1 3475 |
. . . . 5
| |
| 3 | 2 | sseli 3269 |
. . . 4
|
| 4 | 3 | con3i 127 |
. . 3
|
| 5 | phiall.1 |
. . . . 5
| |
| 6 | nncex 4396 |
. . . . 5
| |
| 7 | 5, 6 | inex 4105 |
. . . 4
|
| 8 | 7 | phialllem1 4616 |
. . 3
|
| 9 | 1, 4, 8 | sylancr 644 |
. 2
|
| 10 | uncom 3408 |
. . . . . . 7
| |
| 11 | inundif 3628 |
. . . . . . 7
| |
| 12 | 10, 11 | eqtri 2373 |
. . . . . 6
|
| 13 | uneq2 3412 |
. . . . . 6
| |
| 14 | 12, 13 | syl5eqr 2399 |
. . . . 5
|
| 15 | phiun 4614 |
. . . . . 6
| |
| 16 | incom 3448 |
. . . . . . . . 9
| |
| 17 | disjdif 3622 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqtri 2373 |
. . . . . . . 8
|
| 19 | phidisjnn 4615 |
. . . . . . . 8
| |
| 20 | 18, 19 | ax-mp 8 |
. . . . . . 7
|
| 21 | 20 | uneq1i 3414 |
. . . . . 6
|
| 22 | 15, 21 | eqtri 2373 |
. . . . 5
|
| 23 | 14, 22 | syl6eqr 2403 |
. . . 4
|
| 24 | 5, 6 | difex 4107 |
. . . . . 6
|
| 25 | vex 2862 |
. . . . . 6
| |
| 26 | 24, 25 | unex 4106 |
. . . . 5
|
| 27 | phieq 4570 |
. . . . . 6
| |
| 28 | 27 | eqeq2d 2364 |
. . . . 5
|
| 29 | 26, 28 | spcev 2946 |
. . . 4
|
| 30 | 23, 29 | syl 15 |
. . 3
|
| 31 | 30 | exlimiv 1634 |
. 2
|
| 32 | 9, 31 | syl 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-0c 4377 df-addc 4378 df-nnc 4379 df-phi 4565 |
| This theorem is referenced by: phiall 4618 |
| Copyright terms: Public domain | W3C validator |