| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > unab | Unicode version | ||
| Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbor 2066 |
. . 3
| |
| 2 | df-clab 2340 |
. . 3
| |
| 3 | df-clab 2340 |
. . . 4
| |
| 4 | df-clab 2340 |
. . . 4
| |
| 5 | 3, 4 | orbi12i 507 |
. . 3
|
| 6 | 1, 2, 5 | 3bitr4ri 269 |
. 2
|
| 7 | 6 | uneqri 3406 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 |
| This theorem is referenced by: unrab 3526 rabun2 3534 dfif6 3665 nnc0suc 4412 nncaddccl 4419 preaddccan2lem1 4454 ltfintrilem1 4465 nnadjoin 4520 tfinnn 4534 phiun 4614 unopab 4638 clos1basesuc 5882 leconnnc 6218 addccan2nclem2 6264 nchoicelem16 6304 |
| Copyright terms: Public domain | W3C validator |