| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > uniprg | Unicode version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
| Ref | Expression |
|---|---|
| uniprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3799 |
. . . 4
| |
| 2 | 1 | unieqd 3902 |
. . 3
|
| 3 | uneq1 3411 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2367 |
. 2
|
| 5 | preq2 3800 |
. . . 4
| |
| 6 | 5 | unieqd 3902 |
. . 3
|
| 7 | uneq2 3412 |
. . 3
| |
| 8 | 6, 7 | eqeq12d 2367 |
. 2
|
| 9 | vex 2862 |
. . 3
| |
| 10 | vex 2862 |
. . 3
| |
| 11 | 9, 10 | unipr 3905 |
. 2
|
| 12 | 4, 8, 11 | vtocl2g 2918 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-uni 3892 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |