| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3bitr4d | GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (φ → (ψ ↔ χ)) |
| 3bitr4d.2 | ⊢ (φ → (θ ↔ ψ)) |
| 3bitr4d.3 | ⊢ (φ → (τ ↔ χ)) |
| Ref | Expression |
|---|---|
| 3bitr4d | ⊢ (φ → (θ ↔ τ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 | . 2 ⊢ (φ → (θ ↔ ψ)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 3bitr4d.3 | . . 3 ⊢ (φ → (τ ↔ χ)) | |
| 4 | 2, 3 | bitr4d 247 | . 2 ⊢ (φ → (ψ ↔ τ)) |
| 5 | 1, 4 | bitrd 244 | 1 ⊢ (φ → (θ ↔ τ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: sbcom 2089 sbcom2 2114 r19.12sn 3789 lefinlteq 4463 eqtfinrelk 4486 tfinlefin 4502 opbrop 4841 fvopab3g 5386 unpreima 5408 inpreima 5409 respreima 5410 fconst5 5455 isotr 5495 ncseqnc 6128 |
| Copyright terms: Public domain | W3C validator |