| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
| 2 | 1 | exp3a 425 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
| 3 | 2 | 3imp 1145 | 1 ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: mob 3018 eqreu 3028 dedth3h 3705 peano5 4409 ncfinraise 4481 ncfinlower 4483 nnpweq 4523 spfininduct 4540 clos1induct 5880 3ecoptocl 5998 sbthlem2 6204 |
| Copyright terms: Public domain | W3C validator |