| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ad2antrl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| ad2antrl | ⊢ ((χ ∧ (φ ∧ θ)) → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (φ → ψ) | |
| 2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → ψ) |
| 3 | 2 | adantl 452 | 1 ⊢ ((χ ∧ (φ ∧ θ)) → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: simprl 732 simprll 738 simprlr 739 preaddccan2 4455 ncfinlower 4483 tfinnn 4534 sfinltfin 4535 enadjlem1 6059 sbthlem3 6205 nchoicelem17 6305 nchoice 6308 |
| Copyright terms: Public domain | W3C validator |