| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > baib | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (ψ → (φ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 490 | . 2 ⊢ (ψ → (χ ↔ (ψ ∧ χ))) | |
| 2 | baib.1 | . 2 ⊢ (φ ↔ (ψ ∧ χ)) | |
| 3 | 1, 2 | syl6rbbr 255 | 1 ⊢ (ψ → (φ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: baibr 872 rbaib 873 ceqsrexbv 2973 elrab3 2995 dfpss3 3355 rabsn 3790 elrint2 3968 fnres 5199 fvmpti 5699 |
| Copyright terms: Public domain | W3C validator |