Detailed syntax breakdown of Definition df-iso
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class A |
| 2 | | cB |
. . 3
class B |
| 3 | | cR |
. . 3
class R |
| 4 | | cS |
. . 3
class S |
| 5 | | cH |
. . 3
class H |
| 6 | 1, 2, 3, 4, 5 | wiso 4782 |
. 2
wff H
Isom R, S (A, B) |
| 7 | 1, 2, 5 | wf1o 4780 |
. . 3
wff H:A–1-1-onto→B |
| 8 | | vx |
. . . . . . . 8
setvar x |
| 9 | 8 | cv 1641 |
. . . . . . 7
class x |
| 10 | | vy |
. . . . . . . 8
setvar y |
| 11 | 10 | cv 1641 |
. . . . . . 7
class y |
| 12 | 9, 11, 3 | wbr 4639 |
. . . . . 6
wff xRy |
| 13 | 9, 5 | cfv 4781 |
. . . . . . 7
class (H ‘x) |
| 14 | 11, 5 | cfv 4781 |
. . . . . . 7
class (H ‘y) |
| 15 | 13, 14, 4 | wbr 4639 |
. . . . . 6
wff (H
‘x)S(H
‘y) |
| 16 | 12, 15 | wb 176 |
. . . . 5
wff (xRy ↔ (H
‘x)S(H
‘y)) |
| 17 | 16, 10, 1 | wral 2614 |
. . . 4
wff ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y)) |
| 18 | 17, 8, 1 | wral 2614 |
. . 3
wff ∀x ∈ A ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y)) |
| 19 | 7, 18 | wa 358 |
. 2
wff (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y))) |
| 20 | 6, 19 | wb 176 |
1
wff (H
Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y)))) |