| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-un | GIF version | ||
| Description: Define the union of two classes. See elun 3220 for membership. (Contributed by SF, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-un | ⊢ (A ∪ B) = ( ∼ A ⩃ ∼ B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | cB | . . 3 class B | |
| 3 | 1, 2 | cun 3207 | . 2 class (A ∪ B) |
| 4 | 1 | ccompl 3205 | . . 3 class ∼ A |
| 5 | 2 | ccompl 3205 | . . 3 class ∼ B |
| 6 | 4, 5 | cnin 3204 | . 2 class ( ∼ A ⩃ ∼ B) |
| 7 | 3, 6 | wceq 1642 | 1 wff (A ∪ B) = ( ∼ A ⩃ ∼ B) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elun 3220 nfun 3231 symdifeq1 3248 symdifeq2 3249 dfin5 3545 uncompl 4074 unexg 4101 |
| Copyright terms: Public domain | W3C validator |