| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exanali | GIF version | ||
| Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| exanali | ⊢ (∃x(φ ∧ ¬ ψ) ↔ ¬ ∀x(φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim 414 | . . 3 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) | |
| 2 | 1 | exbii 1582 | . 2 ⊢ (∃x(φ ∧ ¬ ψ) ↔ ∃x ¬ (φ → ψ)) |
| 3 | exnal 1574 | . 2 ⊢ (∃x ¬ (φ → ψ) ↔ ¬ ∀x(φ → ψ)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∃x(φ ∧ ¬ ψ) ↔ ¬ ∀x(φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: ax11indn 2195 rexnal 2625 gencbval 2903 nss 3329 ssfin 4470 ncfinlowerlem1 4482 spfinex 4537 nfunv 5138 funsex 5828 fnfullfunlem1 5856 foundex 5914 fnfreclem1 6317 |
| Copyright terms: Public domain | W3C validator |