| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > f1of | GIF version | ||
| Description: A one-to-one onto mapping is a mapping. (Contributed by set.mm contributors, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of | ⊢ (F:A–1-1-onto→B → F:A–→B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 5286 | . 2 ⊢ (F:A–1-1-onto→B → F:A–1-1→B) | |
| 2 | f1f 5258 | . 2 ⊢ (F:A–1-1→B → F:A–→B) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (F:A–1-1-onto→B → F:A–→B) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 –→wf 4777 –1-1→wf1 4778 –1-1-onto→wf1o 4780 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-f1 4792 df-f1o 4794 |
| This theorem is referenced by: f1ofn 5288 f1imacnv 5302 fsn 5432 f1ocnvfv1 5476 f1ofveu 5480 f1ocnvdm 5481 isocnv 5491 isores2 5493 isotr 5495 f1oiso2 5500 mapsn 6026 enmap2lem5 6067 enmap1lem5 6073 1cnc 6139 |
| Copyright terms: Public domain | W3C validator |